- Calculators
- ::
- Polynomial Calculators
- ::
- Synthetic Division Calculator

**This calculator divides polynomials by binomials using synthetic division.**Additionally, the calculator computes the remainder when a polynomial is divided by x−c and checksif the divisor is a factor of dividend.The calculator shows all the steps and provides a full explanation for each step.

working...

Polynomial Calculators

FactoringPolynomials

- Polynomial Roots
- Synthetic Division
- PolynomialOperations
- GraphingPolynomials
- Simplify Polynomials
- Generate From Roots

Rational Expressions

Simplify Expression

- Multiplication / Division
- Addition / Subtraction

Radical Expressions

Rationalize Denominator

- Simplifying

Solving Equations

Quadratic Equations Solver

- Polynomial Equations
- Solving Equations - WithSteps

Quadratic Equation

Solving (with steps)

- Quadratic Plotter
- Factoring Trinomials

2D Shapes

Equilateral Triangle

- Right Triangle
- Oblique Triangle
- Square Calculator
- Rectangle Calculator
- Circle Calculator
- Hexagon Calculator
- Rhombus Calculator
- Trapezoid Calculator

3D Shapes

Cube

- Cuboid
- Triangular Prism
- Pyramid
- Cylinder
- Cone
- Sphere

Analytic Geometry

Distance calculator

- Midpoint Calculator
- Triangle Calculator
- Graphing Lines
- Lines Intersection
- Two Point Form
- Line-Point Distance
- Parallel/Perpendicular
- Circle Equation
- Circle From 3 Points
- Circle-line Intersection

Complex Numbers

Modulus, inverse, polar form

- Division
- SimplifyExpression

Systems of equations

System 2x2

- System 3x3
- System 4x4

Matrices

- Add, Subtract,Multiply
- Determinant Calculator
- Matrix Inverse
- CharacteristicPolynomial
- Eigenvalues
- Eigenvectors
- MatrixDecomposition

Calculus Calculators

Limit Calculator

- Derivative Calculator
- Integral Calculator

Sequences & Series

ArithmeticSequences

- GeometricSequences
- Find nth Term

Trigonometry

Degrees toRadians

- Trig.Equations

Numbers

Long Division

- Evaluate Expressions
- Fraction Calculator
- Greatest Common Divisor GCD
- Least Common Multiple LCM
- Prime Factorization
- Scientific Notation
- Percentage Calculator
- Dec / Bin / Hex

Statistics and probability

- Probability Calculator
- Probability Distributions
Descriptive Statistics

- Standard Deviation
- Z - score Calculator
- NormalDistribution
- T-Test Calculator

Financial Calculators

Simple Interest

- Compound Interest
- AmortizationCalculator
- Annuity Calculator

Other Calculators

Sets

Work Problems

EXAMPLES

example 1:ex 1:

Divide $3x^3-5x+2$ by $x-4$ using synthetic division.

example 2:ex 2:

Find the remainder when $5x^4-2x^3-4x^2 + 2$ is divided by $x-2$.

example 3:ex 3:

Divide $-x^5-5x^3-x^2+2$ by $3x-1$.

example 4:ex 4:

Determine whether $x-1$ is a factor of $3x^3-5x^2-x+3$.

Find more worked-out examples in the database of solved problems..

Search our database with more than 250 calculators

TUTORIAL

## Synthetic division

Synthetic division is, by far, the easiest and fastest method to divide a polynomial by $ \color{blue}{x - c} $, where $ \color{blue}{c} $ is a constant. This method only workswhen we divide by a linear factor. Let's look at two examples to learn how we can apply this method.

### Example 1 : Divide $ x^2 +3x - 2 $ by $x - 2$.

**Step 1:** Write down the coefficients of $ 2x^2 +3x +4 $ into the division table.

$$\begin{array}{c|rrr}\color{blue}{\square} &2&3&4\\& & & \\\hline& & &\end{array}$$

**Step 2:** Change the sign of a number in the divisor and write it on the left side. In this case, thedivisor is $x - 2$ so we have to change $\, -2 \,$ to $\, \color{blue}{2} $.

$$\begin{array}{c|rrr}\color{blue}{2} &2&3&4\\& & & \\\hline& & &\end{array}$$

**Step 3:** Carry down the leading coefficient

$$\begin{array}{c|rrr}2 &\color{orangered}{2}&3&4\\& & & \\\hline&\color{orangered}{2}& &\end{array}$$

**Step 4:** Multiply carry-down by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{2} &2&3&4\\& &\color{blue}{4} & \\\hline&\color{blue}{2}& &\end{array}$$

**Step 5:** Add the last column

$$\begin{array}{c|rrr}2 &2&\color{orangered}{3}&4\\& &\color{orangered}{4}& \\\hline&2&\color{orangered}{7}&\end{array}$$

**Step 6:** Multiply previous value by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{2} &2&3&4\\& &4&\color{blue}{14} \\\hline&2&\color{blue}{7}&\end{array}$$

**Step 6:** Add the last column

$$\begin{array}{c|rrr}\color{blue}{2} &2&3&\color{orangered}{4}\\& &4&\color{orangered}{14} \\\hline&2&7& \color{orangered}{18}\end{array}$$

**Step 7:** Read the result from the synthetic table.

$$\begin{array}{c|rrr}2&2&3&4\\& &4&14\\\hline&\color{blue}{2}&\color{blue}{7}& \color{orangered}{18}\end{array}$$

The quotient is $ \color{blue}{2x + 7}$ and the remainder is $\color{orangered}{18}$.

Starting polynomial $ x^2 +3x - 2 $ can be written as:

$$ x^2 +3x - 2 = \color{blue}{2x + 7} + \dfrac{ \color{orangered}{18} }{ x - 2 } $$

### Example 2 : Divide $ x^4 + 10x + 1 $ by $x + 2$.

**Step 1:** Write down the coefficients of $ x^4 - 10x + 1 $ into the division table.(Note that this polynomial doesn't have $x^3$ and $x^2$ terms, so these coefficients must be zero)

$$\begin{array}{c|rrr}\color{blue}{\square} &1&0&0& 10&1\\& & & & &\\\hline& & & & &\end{array}$$

**Step 2:** Change the sign of a number in the divisor and write it on the left side. In this case, thedivisor is $x + 3$ so we have to change $\, +3 \,$ to $\, \color{blue}{-3} $.

$$\begin{array}{c|rrr}\color{blue}{-3}&1&0&0&10&1\\& & & & &\\\hline& & & & &\end{array}$$

**Step 3:** Carry down the leading coefficient

$$\begin{array}{c|rrr}\color{blue}{-3}&\color{orangered}{1}&0&0&10&1\\& & & & &\\\hline&\color{orangered}{1}& & & &\end{array}$$

Multiply carry-down by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{-3}&1&0&0&10&1\\& &\color{blue}{-3}& & &\\\hline&\color{blue}{1}& & & &\end{array}$$

ADD the last column

$$\begin{array}{c|rrr}-3 &1&\color{orangered}{0}&0&10&1\\& &\color{orangered}{-3}& & &\\\hline&1&-3 & & &\end{array}$$

Multiply last value by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{-3} &1&0&0&10&1\\& &-3&\color{blue}{9}& &\\\hline&1&\color{blue}{-3} & & &\end{array}$$

ADD the last column

$$\begin{array}{c|rrr}-3 &1& 0&\color{orangered}{0}&10&1\\& &-3&\color{orangered}{9}& &\\\hline&1&-3&\color{orangered}{9}& &\end{array}$$

Multiply last value by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{-3} &1& 0&0&10&1\\& &-3&9& \color{blue}{-27}&\\\hline&1&-3&\color{blue}{9}& &\end{array}$$

ADD the last column

$$\begin{array}{c|rrr}-3 &1&0&0&10&\color{orangered}{1}\\& &-3& 9 & \color{orangered}{-27}&\\\hline&1&-3&9& \color{orangered}{-17}&\end{array}$$

Multiply last value by left term and put the result into the next column

$$\begin{array}{c|rrr}\color{blue}{-3} &1&0&0&10&1\\& &-3& 9 &-27&\color{blue}{51}\\\hline&1&-3&9&\color{blue}{-17}&\end{array}$$

ADD the last column

$$\begin{array}{c|rrr}-3 &1&0&0&10&\color{orangered}{1}\\& &-3& 9 &-27&\color{orangered}{51}\\\hline&1&-3&9&-17&\color{orangered}{52}\end{array}$$

**Step 7:** Read the result from the synthetic table.

$$\begin{array}{c|rrr}-3 &1&0&0&10&\color{orangered}{1}\\& &-3& 9 &-27&\color{orangered}{51}\\\hline&\color{blue}{1}&\color{blue}{-3}&\color{blue}{9}&\color{blue}{-17}&\color{orangered}{52}\end{array}$$

The quotient is $ \color{blue}{x^3 - 3x^2 + 9x - 17}$ and the remainder is $\color{orangered}{52}$.

Starting polynomial $ x^4 + 10x + 1 $ can be written as:

$$ x^4 + 10x + 1 = \color{blue}{x^3 - 3x^2 + 9x - 17} + \dfrac{ \color{orangered}{52} }{ x + 3 } $$

RESOURCES

1. Synthetic division — college algebra tutorial.

2. Basic examples on how to apply synthetic division.

3. Video tutorial on how to divide third order polynomial by the monomial.

4. Synthetic division algorithm — step-by-step approach.

439 588 094 solved problems