Gehirnstimulation mit 3D-Ultraschall gegen neurologische Erkrankungen (2024)

Die elektrische Aktivität von rund 86 Milliarden Nervenzellen ist die Grundlage für die Fähigkeiten des Gehirns, Sinneseindrücke zu verarbeiten, Informationen zu speichern, Entscheidungen zu treffen und Funktionen des Körpers zu steuern. Dementsprechend hängen auch Erkrankungen wie Parkinson, Epilepsie oder Tremor von der Signalverarbeitung und dem Zusammenspiel der Nervenzellen ab. Seit Jahrzehnten versuchen Forschende daher, neurologische Erkrankungen durch elektrische oder elektromagnetische Stimulation der entsprechenden Gehirnareale zu therapieren. Doch Methoden wie die Stimulation mittels von außen angelegter Magnetfelder bringen aufgrund der relativ geringen Präzision, mit der sie einwirken, derzeit noch keine optimalen Ergebnisse. Das operative Platzieren von Elektroden im Gehirn ist dagegen sehr riskant.

Wissenschaftlerinnen und Wissenschaftler vom Fraunhofer IBMT im saarländischen St. Ingbert arbeiten an einer nicht-invasiven Neurostimulation der Gehirnareale auf Basis von Ultraschall. Der entsprechende Applikator (Schallkopf) wird über ein flexibles Pad auf den Kopf gesetzt. Dessen Ultraschallsignale sind von so niedriger Intensität, dass sie das Zellgewebe nicht schädigen, zugleich lassen sie sich durch eine 3D-Steuerung des Schallstrahls (3D-Beam-Steering) sehr genau fokussieren. Mediziner und Forschende setzen daher große Hoffnungen in die Technologie. In Zukunft könnte sie für die Therapie von verschiedensten neurologischen Erkrankungen wie beispielsweise Epilepsie oder zur Behandlung der Folgen von Schlaganfällen eingesetzt werden. Die Fraunhofer-Forschenden entwickeln das Verfahren im Rahmen verschiedener öffentlicher und industrieller Forschungsprojekte und arbeiten dabei mit Partnern aus Deutschland, der EU, USA, Kanada und Australien zusammen.

3D-Schallsignale stimulieren in der Tiefe

Die Fraunhofer-Forschenden im Team von Abteilungsleiter Steffen Tretbar haben für die Technologie einen einzigartigen Aufbau entwickelt. Dieser ermöglicht es, die Ultraschallwellen auf einzelne Punkte im Gehirn zu richten und sie auch dann gezielt anzusprechen, wenn sie tief im Gewebe liegen. Dafür hat das Team einen speziellen Schallkopf mit 256 Einzelelementen, einen Ultraschalltransducer entwickelt. Jedes der 256 Einzelelemente des Schallwandlers lässt sich einzeln ansteuern. Steffen Tretbar erklärt die Grundidee: »Durch eine individuelle Ansteuerung der 256 elektronischen Kanäle wird die Ultraschall-Behandlung 3D-fähig. Die schachbrettartig angeordneten Elemente des Schallwandlers bestrahlen das gewünschte Gehirnareal aus unterschiedlichen Winkeln. Daher kann der Fokus, also der Punkt, an dem sich die Strahlen treffen, auf eine bestimmte Tiefe im Gehirngewebe gesetzt werden. So ist die Behandlung für Patientinnen und Patienten individuell anpassbar.«

Für die Schallwandler nutzen die Fraunhofer-Forschenden piezoelektrische Elemente. Diese verändern ihre Oberfläche, wenn eine Spannung angelegt wird, und produzieren so den Ultraschall. Die Forscher arbeiten derzeit an einer weiteren Erhöhung der Genauigkeit, indem sie zwei Ultraschalltransducer gleichzeitig einsetzen und die Schallstrahlen dynamisch im Zielareal kreuzen. Die Kombination aus einem sehr kleinen Fokus zwischen drei und fünf Millimetern und nahezu beliebiger Platzierung des Fokus in der Tiefe des Gehirns schafft die Möglichkeit zielgerichteter und gleichzeitig schonender Modulation der Gehirnareale. Die Ultraschallfrequenzen bewegen sich im niederfrequenten Bereich unter 1 MHz, beispielsweise bei etwa 500 kHz. »Der Mensch merkt nichts, und der Ultraschall ist aufgrund seiner geringen Intensität nach derzeitigem Stand der Forschung unbedenklich«, erklärt Tretbar. Für eine Behandlung, die nach Einschätzungen von Medizinerinnen und Medizinern pro Sitzung nur wenige Minuten dauern wird, muss das Haar nicht abrasiert werden. Vor dem Aufsetzen des Pads mit dem Ultraschall-Modul auf den Kopf muss lediglich ein Kontaktgel in das Haar einmassiert werden.

Markerpunkte aus der Magnetresonanz-Tomografie

Das Team des Fraunhofer IBMT hat neben dem Ultraschalltransducer und der Elektronik auch die Software entwickelt, mit der die 256 Elemente des Schallwandlers einzeln angesteuert werden. Die für die Planung nötigen Daten erhält die Software aus den Ergebnissen einer Magnetresonanztomografie des Patienten oder der Patientin. Darin werden die für die jeweilige neuronale Erkrankung verantwortlichen Gehirnareale und deren Position markiert. Die Markierungen fließen in einen Datensatz ein, der in die Steuerungssoftware eingespeist wird. Mit diesen Positionsdaten lassen sich die Ultraschallsignale exakt ausrichten. Es ist darüber hinaus möglich, das Ultraschallgerät so zu programmieren, dass die Strahlen in einer vordefinierten Sequenz gesendet werden oder bestimmten Bewegungsmustern folgen. Damit könnten die Ärztinnen und Ärzte in Zukunft alle Parameter individuell für den Menschen festlegen. »Das ist noch ein recht neues, aber sehr vielversprechendes Forschungsfeld. Derzeit arbeiten weltweit Kliniken und Forschende daran, solche Ultraschallsequenzen zu entwickeln und zu erproben«, ergänzt Tretbar.

Das Fraunhofer IBMT hat jahrelange Erfahrung in der Entwicklung von Ultraschall-Arrays, mehrkanaligen Ultraschallsystemen und der Formung von Schallstrahlen via Beam-Steering. Auf Basis dieser Expertise ist eine universal einsetzbare Technologie-Plattform entstanden, die laufend weiterentwickelt wird. »Forschende können unsere Technologie-Plattform nutzen, um ganz verschiedene Therapien zu entwickeln und in Zukunft auch in klinischen Testreihen zu erproben«, sagt Tretbar.

Linderung von Symptomen

Ärztinnen und Ärzte erwarten von der Ultraschall-Behandlung bei Erkrankungen wie beispielsweise Parkinson und Epilepsie zwar keine vollständige Heilung, aber zumindest eine spürbare Linderung der Symptome. Zudem stellt Ultraschall eine vielversprechende Alternative zu klassischen Medikamenten dar. Langfristig sind mit der neuen Technologie auch Szenarien wie das Lösen von Plaque in den Gehirnzellen bei Alzheimer-Erkrankungen oder die Behandlung von Depressionen und neuronal bedingten Suchterkrankungen denkbar.

Das Fraunhofer-Team arbeitet mit Forschenden verschiedener Projektpartner und Universitäten zusammen. Prof. Andreas Melzer, Direktor des Innovation Center Computer Assisted Surgery ICCAS Universität Leipzig, setzt große Hoffnungen auf die neuartige Technologie: »Die Möglichkeit, auch tiefliegende Punkte im Gehirn exakt zu treffen sowie die Sequenzierung der Ultraschallsignale öffnen in Zukunft ganz neue Möglichkeiten, die individuelle Neurostimulation zu erproben und zu entwickeln.«

Gehirnstimulation mit 3D-Ultraschall  gegen neurologische Erkrankungen (2024)

References

Top Articles
Latest Posts
Article information

Author: Melvina Ondricka

Last Updated:

Views: 6198

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Melvina Ondricka

Birthday: 2000-12-23

Address: Suite 382 139 Shaniqua Locks, Paulaborough, UT 90498

Phone: +636383657021

Job: Dynamic Government Specialist

Hobby: Kite flying, Watching movies, Knitting, Model building, Reading, Wood carving, Paintball

Introduction: My name is Melvina Ondricka, I am a helpful, fancy, friendly, innocent, outstanding, courageous, thoughtful person who loves writing and wants to share my knowledge and understanding with you.